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Abstract
The conventional time-dependent Schrödinger equation describes only
unidirectional time evolution of the state of a physical system, i.e. forward
or, less commonly, backward. This paper proposes a generalized quantum
dynamics for the description of joint, and interactive, forward and backward
time evolution within a physical system. The principal mathematical
assumption for bidirectional evolution in general is that the space of states
should be taken to be not merely a Hilbert space, but a more restricted entity
known as a Kreı̆n space, which is a complex Hilbert space with a Hermitian
operator that has eigenvalues +1 and−1 only, and that therefore gives rise to an
indefinite metric. The vector subspaces of states with positive or negative norm
with respect to the indefinite metric will—for open channels—be construed
to be states in forward or, respectively, backward evolution along the time
axis. The quantum dynamics is generated by a pseudo-Hermitian Hamiltonian
operator and conserves inner products with respect to the indefinite metric.
Input and output states are defined in physically plausible ways such that the
output comprises both reflected and transmitted states from a zone of interaction
in time; a unitary transformation between input and output states is obtained
from the pseudounitary transformation between the initial and final states.
Three applications are studied: (1) a formal theory of collisions in terms of
perturbation theory; (2) a relativistically invariant quantum field theory for
a system that kinematically comprises the direct sum of two quantized real
scalar fields, such that one subfield evolves forward and the other backward in
time, and such that there is dynamical coupling between the subfields; (3) an
argument that in the latter field theory, the dynamics predicts that in a range of
values of the coupling constants, the expectation value of the vacuum energy
of the universe is forced to be zero to high accuracy.
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1. Introduction

The usual time-dependent Schrödinger equation is[
h̄

i

∂

∂t
+H

]
�(t) = 0 (1)

where�(t) is a time-evolving state vector in a Hilbert space, and H is a Hermitian Hamiltonian
operator. This equation has the property that it describes just the unidirectional evolution of
the state of a physical system from one time to another time that can be later or earlier than the
first. Our principal objective herein is to construct a more general form of quantum mechanics
that can describe a physical system in which part of the system evolves forward in time, while
the remaining part evolves backward in time, and such that the two parts can interact.

The argument proceeds from the observation that such a formalism can be inferred from
the quantum mechanics of two known physical systems: the first is the description, by a time-
independent Schrödinger equation, of the evolution of a system along a space-like reaction
coordinate, and the second is the complex Klein–Gordon equation for the motion of a spinless
particle in the presence of a fixed, transient vector potential field. We shall not present
the theory associated with these cases in detail, but sketch the ideas in the following two
paragraphs.

For the evolution of a steady-state physical system along a space-like reaction coordinate,
we cite as an example the evolution of the reversible, collinear chemical reaction A + BC ↔
AB +C in the centre-of-mass system (see [1–4]) or, more simply, reflection and transmission
of a beam of structureless particles from a potential barrier in one dimension. The second-order
Schrödinger equation can be recast [5] as a coupled system of ordinary first-order equations,
where the wavefunction is expanded in a set of vibrational states of the transverse coordinate.
An indefinite metric matrix is derived from Wronskians, such that waves travelling forward
along the reaction coordinate have positive norms, and waves travelling backward along the
reaction coordinate have negative norms. The dynamics is governed by a Hamiltonian that is
pseudo-Hermitian with respect to the metric, and hence conserves inner products with respect
to the metric. The input comprises travelling waves (i.e. open channels) converging on the
reaction zone, and the output comprises waves diverging from the reaction zone. A unitary
S-matrix transforming input into output can be assembled from reflection and transmission
matrices pertaining to open channels.

In the case of the Klein–Gordon equation, a Schrödinger-equation-likeformalism has been
derived by Feshbach and Villars [6], equation (2.15), and the following. The Hamiltonian
proves to be pseudo-Hermitian with respect to an indefinite metric. The input comprises
positive energy (and positive norm) states at large negative times, and negative energy (and
negative norm) states at large positive times; the output comprises negative norm states at
large negative times, and positive norm states at large positive times. It is straightforward,
using the formalism developed by Bjorken and Drell [7], equations (9.6) and (9.20), to verify
that a unitary S-matrix mapping input into output can be constructed from reflection and
transmission coefficients.

A considerable selection of books has been published that is concerned with the physics
and metaphysics of time, irreversibility, time’s arrow and so on. A representative list comprises
[8–17]. The book by Zeh [12] has a long list of references on the subject of its title, and much
quantitative discussion; Zeh has put a preliminary version of the fourth edition of his book
online1.

1 www.time-direction.de.
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A line of investigation related to the present one was initiated by Schrödinger [18], as
elaborated by Aebi [19, 20], and other works referenced therein. The generic idea of this line
is to consider the evolution of diffusion or quantum processes, for which partial information
on the state of the system is given at each of two finite times, and to infer the likeliest state of
the system at intermediate times. Aharonov et al [21] and Reznik et al [22] constructed a time-
symmetric quantum mechanics that utilizes information about the state of a system at both ends
of a time interval to infer the expected results of measurements at an intermediate time. These
investigations did not attempt to generalize quantum mechanics as is done here, but recast
the existing physical laws in an alternate form. Perhaps the closest predecessor theory to that
presented herein is the discussion/analysis of the problem of two-point boundary conditions
in quantum mechanics by Schulman ([13], ch 5.3). Schulman’s work is discussed in [12]
(ch 5.3). In particular, Schulman ([13], p 184) introduces ‘subspace boundary value problems’
as a category of two-time boundary conditions; nevertheless, Schulman’s quantum dynamics
uses a Hermitian Hamiltonian, and correspondingly does not introduce an indefinite metric,
so that his proposed theory does not conserve probability in the sense that will be done here.
Schulman [23], plus a directed comment by Casati et al [24] and reply by Schulman [25],
dealt with a classical mechanics construction of opposite thermodynamic arrows of time.

Cramer [26] has developed a ‘transactional’ interpretation of quantum mechanics that
involves the presence of advanced as well as retarded interactions that are invoked to
relieve some of the counterintuitive nonlocality involved in the collapse of the wavefunction.
Cramer, however, does not introduce a generalized dynamics associated with the transactional
interpretation, and makes predictions that do not differ from those of standard quantum
mechanics ([26], ch III.B, last paragraph). I infer also that Cramer presumes that the strength
of the interactions of the advanced waves with ordinary matter is the same as, or roughly
comparable to, that of retarded waves. In the theory described below, interactions between
the forward- and backward-evolving subspaces are presumed on physical grounds to be very
small compared to, say, electromagnetic interactions within each subspace.

A subject that is employed in the mathematics used herein is the study of infinite-
dimensional complex vector spaces that are endowed with a nondegenerate, sesquilinear
inner product that gives rise to an indefinite metric. In quantum field theory, this subject was
first studied by Dirac [27], and in mathematics by Pontrjagin [28]. The former area was a
subject of interest in the 1940s to the early 1960s, as reviewed in [29]; the latter subject is still
an area of mathematical interest, see [30].

The remainder of this paper is organized as follows. In section 2 we formulate a
quantum dynamics, in the form of a Schrödinger equation and some rules for interpreting
the associated mathematics, that can treat physical systems in which joint, and interactive,
motion or evolution in both directions in time can occur. Section 3 derives a formal theory
of scattering, i.e. transition operators and S-matrices, for collision processes with a time-
independent Hamiltonian governing the dynamics. Section 4 presents the basics of a physical
system comprising the direct sum of two interacting quantized real scalar fields; the theory is
shown to be relativistically invariant, and perturbation theory is applied to a case of two-body
collisions. Section 5 concludes the paper with a discussion of some of the ideas presented
herein, and with a quantitative argument to the effect that in a suitable range of parameter
values of the field theory of section 4, the expectation value of the vacuum energy of the
universe necessarily vanishes to high accuracy. The appendix shows how to obtain transition
rates from transition operators.

We emphasize that the statement given herein of a Schrödinger equation to describe
bidirectional motion in time is incomplete: important, but derivative, theoretical aspects,
such as a manifestly covariant perturbation scheme for the quantum field theory of section 4,
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and modifications of quantum measurement theory, including an analysis of wavefunction
‘collapse’, etc remain to be worked out.

2. Quantum mechanics of bidirectional motion

In this section, we shall propose a formalism that accomplishes the paper’s title objective. The
principal mathematical idea is to introduce a state space with a nondegenerate inner product that
yields an indefinite metric, and correspondingly, a pseudo-Hermitian Hamiltonian to govern
the dynamics. The attendant physical interpretation will posit that state space comprises the
direct sum of two orthogonal subspaces, such that one has a positive definite norm and the
other a negative definite norm; for open channels, these two subspaces will correspond to
those states of motion of the system that evolve forward and backward in time, respectively.

Some of the mathematical community presently designates a state space of the above type,
with a suitable topology, as a Kreı̆n space (described, with references, in the encyclopedia
[31], vol 5, p 303), named for the Ukrainian mathematician M G Kreı̆n: see [32] for a
description of Kreı̆n’s work in this area, and [30] for the theory of Kreı̆n spaces. An earlier
designation, Nevanlinna space (mentioned in [29], section 1), now applies to a different
entity [33]2. The properties of matrices in finite-dimensional vector spaces with an indefinite
metric are discussed in [34]. An alternate formulation of the latter class of spaces has been
called ‘complex symplectic geometry’ (see [35]), although this usage conflicts with an earlier
development ([36], p 23, definition 1), in that the extension of symplectic geometry from the
real coefficient field to the complex field entails a sesquilinear and, implicitly, a bilinear form
in the respective definitions. The mathematical physics community for the most part seems
to have used the designation ‘space with an indefinite metric’, although the name ‘Kreı̆n
space’ sometimes appears [37]; the designation ‘pseudo-Hilbert space’ [38, 39] was used
rarely.

Beginning with the work of Dirac [27] and Pauli [40], a substantial body of work on
quantum field theory was done that dealt with state spaces with an indefinite metric, as
reviewed in [29]. There is little overlap between this theoretical work and that presented
below: (1) we shall not introduce anomalous commutators for the creation and destruction
operators associated with a quantum field; (2) we shall (in section 4) deal with a field theory
for which a complete quantum state is a vector in a space that is made up of the direct sum of
the Fock spaces of two conventional field theories; (3) the S-matrix will be obtained, not by
the mapping of the system’s state at t = −∞ into the state at t = +∞ as input into output,
but as a mapping with a different choice of input and output such that probability is conserved
and the S-matrix is unitary.

More recent work on associated mathematical physics, such as [37], will not be needed
herein as the nonlocal input/output conditions in time suggest a different approach.

We begin with a Hilbert space H, with vectors denoted as ψ ∈ H, and a sesquilinear
product 〈., .〉 with the standard inner product (unit metric matrix) form, such that

〈ψ1, ψ2〉 = (ψ1)
†ψ2 (2a)

〈ψ1, αψ2 + βψ3〉 = α〈ψ1, ψ2〉 + β〈ψ1, ψ3〉 (2b)

〈ψ1, ψ2〉 = 〈ψ2, ψ1〉∗. (2c)

2 See p 8. The Nevanlinna class—which I presume is synonymous with Nevanlinna space—is called N and comprises
those meromorphic functions on the open unit disc in the complex plane that have a bounded characteristic function
(in the work cited).
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We postulate further that H is equivalent to the direct sum of exactly two subspaces HF and
HB with corresponding Hermitian projection operators PF and PB , such that

(P Y )† = PY (3a)

PF + PB = I (3b)

PYPY
′ = PY δYY ′ (3c)

PFH = HF ⊕ 0B (3d )

PBH = 0F ⊕HB (3e)

where I is the identity operator in H, Y and Y ′ can each be F or B, and 0Y is the zero subspace
in HY . We shall use IF and IB as the identity operators in the respective subspaces. We
shall not distinguish between H and the direct sum HF ⊕ HB ; accordingly, if we define for
Y = F,B

ψY = (P Yψ)|HY ∈ HY (4)

we can describe ψ in block column matrix form as

ψ =
[
ψF

ψB

]
. (5)

We now define an operator η that engenders an indefinite metric,

η = PF − PB (6)

and an associated inner product (.; .) as

(ψ1;ψ2) = 〈ψ1, ηψ2〉. (7)

The η-adjoint T ‡ of an operator T acting on H is defined as the unique operator that satisfies(
T ‡ψ1;ψ2

) = (ψ1; Tψ2) (8)

for all ψ1, ψ2 ∈ H. An operator T will be called pseudounitary if it preserves η-products, that
is for all ψ1, ψ2 ∈ H we have

(T ψ1; Tψ2) = (ψ1;ψ2) (9)

and pseudo-Hermitian if T ‡ = T , that is

(T ψ1;ψ2) = (ψ1; T ψ2). (10)

If we revert to the block matrix form of equation (5) we infer that

(ψ1;ψ2) = ψ†
1ηψ2 =

(
ψF1

)†
ψF2 −

(
ψB1

)†
ψB2 . (11)

Also, if for an operator T we define

T YY
′ =

(
PYT PY

′)∣∣∣
Hom[HY←HY ′ ]

(12)

where Hom[HY ← HY ′ ] is the set of complex-linear mappings (i.e. homomorphisms) from
HY ′ into HY , then we have, in block matrix notation,

T =
[
T FF T FB

T BF T BB

]
. (13)

If T is pseudo-Hermitian we have

T = T ‡ = ηT †η =
[
(T FF )† −(T BF )†
−(T FB)† (T BB)†

]
. (14)
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If T is pseudounitary we have the (we presume both left and right) inverse T −1 that
satisfies

T −1 = T ‡ (15)

and, therefore,

(T FF )†(T FF )− (T BF )†(T BF ) = IF (16a)

−(T FB)†(T FF ) + (T BB)†(T BF ) = 0 (16b)

−(T FB)†(T FB) + (T BB)†(T BB) = IB. (16c)

Let it be given that T is pseudounitary and that T BB has an inverse (T BB)ι within HB , in that

(T BB)ιT BB = IB = T BB(T BB)ι. (17)

Then the block operator-matrix Ũ (T ), defined as

Ũ(T ) =
[
T FF − T FB(T BB)ιT BF T FB(T BB)ι

−(T BB)ιT BF (T BB)ι

]
(18)

can, with the aid of equation (16), be proved to be unitary on the left, and similarly for
right unitarity. A more complicated procedure is needed to extract a unitary S-matrix when
asymptotic closed channels are present—see section 3.

A time-dependent vector ψ(t) ∈ H, that is an eigenvector of η with eigenvalue +1
(respectively −1) will—closed channels excepted—be considered to evolve forward
(respectively backward) in time. The expectation value (ψ(t);ψ(t)) of a general state ψ(t)
will be construed as the integrated probability current crossing the complete space-like surface
time = t. The operator η is therefore a kind of velocity operator, describable as the derivative
of dynamical causation time with respect to kinematical time, and can take only the values +1
and −1. This interpretation therefore addresses the question of the velocity of objective flow
of time posed in [14] (p 13).

We proceed from kinematics to a theory of quantum dynamics. Let PF and PB be time
independent, H(t) be a Hamiltonian that is pseudo-Hermitian at each instant, and �(t) ∈ H
a kinematically allowable family of state vectors, described parametrically by dependence
on time. The time evolution of a dynamically allowable family of quantum states �(t) is
governed by the Schrödinger equation

i
d

dt
�(t) = H(t)�(t). (19)

When both �1(t) and �2(t) are solutions of equation (19), their η-product as in equation (7)
will be independent of time. Furthermore, if another operator Z is independent of time and
commutes with H(t) for all times, then (�1(t);Z�2(t)) also is a constant in time.

Suppose now that we have obtained a complete set of solutions of equation (19) across
any desired time interval t− � t � t+; equivalently, we have for each closed interval [t−, t+] in
time a linear operator ϒ(t+, t−) such that

�(t+) = ϒ(t+, t−)�(t−) (20)

for any initial �(t−) ∈ H. One can show that ϒ(t+, t−) is pseudounitary. We define the input
to the physical process taking place to be the blocked vector

�in(t−, t+) =
[
(PF�(t−))|HF

(PB�(t+))|HB

]
(21)

and the output to be

�out(t+, t−) =
[
(PF�(t+))|HF

(PB�(t−))|HB

]
. (22)
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One can now show that, following equation (18), the operator Ũ(ϒ(t+, t−)) is unitary and that

�out(t+, t−) = Ũ(ϒ(t+, t−))�in(t−, t+). (23)

In analysing any physical process taking place in the interval [t−, t+] we assume that the input
state is given, known or controllable. We can obviously multiply �(t) for all t by a constant
factor, with the desired outcome

〈�in(t−, t+),�in(t−, t+)〉 = +1 (24)

(note the use of the Hilbert space norm), so that equation (23) implies

〈�out(t+, t−),�out(t+, t−)〉 = +1. (25)

We therefore have in our possession the bare bones of a probability interpretation for the
proposed scheme of kinematics and dynamics.

We remark that the above interpretation as to what constitutes the input and what the
output to a dynamical process requires modification if one or both ends of the time interval
diverge: since the Hamiltonian can have nonreal eigenvalues, care must be taken to avoid the
divergent solutions associated with these closed-channel states. A class of such problems is
dealt with in the S-matrix formalism of the following section.

We continue to use the assumptions of the previous paragraph, including the normalization
condition (24) on the input. Let Z(t) be a pseudo-Hermitian operator, and define the
expectation value [Z(t)]Av of Z(t) for each t, with the system in the state �(t), in the
standard manner:

[Z(t)]Av = (�(t);Z(t)�(t)). (26)

IfZ(t) = I , the expectation value is just the conservedη-norm of�(t), which can be anywhere
between +1 and−1. As mentioned above, we shall refer to this quantity as the net probability
current at time= t in spacetime. This current is more closely analogous to an electric charge
than to a spatial electric current: the electric charge is the integrated value of the zeroth (time)
component of the 4-vector electric current density over a surface t= constant; considered in
this way, a total electric charge amounts to a net electric current crossing a complete space-like
surface. (Considered in another way, the state vector stays put at any given time; it is we who
are moving through time, and hence we see a changing state vector and thereby net currents
of physical quantities as probability, electric charge, etc.) In the present case, we do not
define a 4-vector probability current density, but simply take as a physical axiom that what is
normally called ‘probability’ is now to be regarded as the net probability current associated
with a quantum state at a given time. For a general pseudo-Hermitian Z(t) its expectation
value with respect to �(t) will be real, and will be taken to have the physical meaning of
the net current, or flow, or transport, of the physical quantity associated with Z(t) across the
chosen complete space-like surface, as that surface moves forward in time with velocity +1.
Note that since the metric or velocity operator η can have only the dimensionless eigenvalues
+1 and −1, a (likely unphysical) density that gives rise to the current associated with a Z(t),
which might take the form of 〈�(t), Z(t)�(t)〉, and the expectation value itself, have the
same physical dimensions.

3. Formal scattering theory

In this section, we shall develop a theory of scattering patterned after the developments in
[41], ch 2.5, and [42], sections 16.2 and 16.3. This formalism treats the time and energy
coordinates in a different way than it treats space and momentum, such that it applies whether
or not the underlying dynamics is relativistically invariant; a corresponding disadvantage is
the resulting lack of manifest relativistic invariance of the terms in the perturbation theory
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expansion for the S-matrix in cases such as the field theory of section 4, which is shown there
to be relativistically invariant in its Hamiltonian form. The formalism will generalize the
conventional one in two respects: first, evolution in both directions in time will be included,
and second, the zeroth-order Hamiltonian will be permitted to have some nonreal eigenvalues
in its spectrum—these correspond to asymptotically closed channels.

Suppose that the Hamiltonian is time independent and has the form

H = H [0] +H [1] (27)

where for both σ = 0, 1

H [σ ] =
[
H [σ ]FF −H [σ ]BF †

H [σ ]BF H [σ ]BB

]
(28)

where the diagonal-block operators are Hermitian, and H [σ ]BF is unrestricted within the
bounds of physical reasonableness. We shall adopt the picture that for large negative times
and large positive times the effects of H [1] are negligible: the very early, as well as the very
late, quantum state can be envisioned as comprising superpositions of states, each of which
describes two spatially widely separated wave packets, such that each packet represents an
entity that does not interact with its partner, and the overall state is a solution of the Schrödinger
equation with H [0] as the Hamiltonian.

We shall argue first that for nontransient transitions to take place, the real sector of the
eigenvalue spectrum of the unperturbed Hamiltonian must, in effect, be positive for both the
states of forward motion in time (FMT) and the states of backward motion in time (BMT). In
the Hamiltonian given above, both H [0] and H [1] are to be time independent; hence energy
is conserved—there will be a delta-function in overall energy that arises in the results below.
A time-independent Hamiltonian that gives rise to nontransient transitions between FMT
and BMT states therefore requires that these two sets of states have the real sectors of their
respective eigenvalue spectra overlap. We therefore abandon the picture that states in BMT
correspond to negative energy states: in general, both FMT and BMT states with real energy
eigenvalues will be assumed to have positive energies, or at least energies that are bounded
below but not above along the real axis.

Next, we specialize H [0] and η so that they have the properties that, although the state
space may be infinite dimensional, permit them to be jointly reduced to that canonical form
for finite-dimensional matrices—described in [34], p 33, theorem 3.3—which occurs when
the minimal polynomial for the Hamiltonian matrix is a product of distinct linear factors. In
particular, we assume that the eigenstates ofH [0] form a complete, orthogonal set with respect
to the underlying Hilbert space. Explicitly, suppose that there is a direct-sum decomposition
of the full state space H such that

H = HR ⊕HN (29a)

HR = HR,F ⊕HR,B (29b)

HN = HN,1 ⊕HN,2 (29c)

and a basis compatible with this decomposition, such that H [0] is diagonal, η is diagonal in
the subspace HR belonging to the real eigenvalue spectrum of H [0], and η has a simple, block
off-diagonal form in the subspace HN belonging to the nonreal eigenvalue spectrum of H [0].
Furthermore, all vectors in HR,F (respectivelyHR,B) are eigenstates of η with eigenvalue +1
(respectively−1). Since each nonreal eigenvalue must have a complex conjugate partner, we
can takeHN,1 andHN,2 to be copies of one another; the former being associated with nonreal
eigenvalues with negative imaginary part, the latter with nonreal eigenvalues with positive
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imaginary part. In matrix form, therefore, we have assumed the existence of an invertible
linear transformation T takingH [0] expressed in an arbitrary basis into a basis so that we have

T −1H [0]T = diag(�R,F ,�R,B,�N,1,�N,2) (30a)

T †ηT =



IR,F 0 0 0

0 −IR,B 0 0
0 0 0 UN,12

0 0 UN,21 0


 . (30b)

In the above, �R,F and IR,F are a real diagonal and the unit matrix, respectively, acting on
HR,F ; �R,B and IR,B are a real diagonal and the unit matrix, respectively, acting on HR,B ;
�N,1 is a diagonal matrix with diagonal elements having negative imaginary parts, acting on
HN,1; UN,21 is the unitary mapping of HN,1 onto HN,2 that takes an eigenstate with eigenvalue
� (having, we have assumed, Im(�) < 0) with respect to�N,1 into a partner eigenstate having
an eigenvalue�∗ with respect to �N,2; and UN,12 is the inverse of UN,21, in that

UN,21 = (UN,12)† (31a)

UN,21UN,12 = IN,2 (31b)

UN,12UN,21 = IN,1 (31c)

UN,21�N,1UN,12 = (�N,2)† (31d )

where IN,1 and IN,2 are the unit matrices in the spaces HN,1 and HN,2, respectively.
Equations (31) are in accord with the pseudo-Hermitian property forH [0].

We remark that the above special form of H [0] excludes all so-called ‘ghost’ states—see
[29], p 14, for definitions, and [34], p 33, theorem 3.3 for the joint canonical form of a general
pseudo-Hermitian matrix and the metric matrix in the finite-dimensional case.

We want to find the Green function forH [0] such that both open-channel (R, F ) states and
closed-channel (N, 1) states evolve forward in time, while open-channel (R,B) and closed-
channel (N, 2) states evolve backward in time. If we put h̄ = 1, G[0](t − t ′) should satisfy[

i
∂

∂t
−H [0]

]
G[0](t − t ′) = δ(t − t ′). (32)

The desired solution is

G[0](t − t ′) = diag(−iθ(t − t ′) exp[−i(t − t ′)�R,F ], iθ(t ′ − t) exp[−i(t − t ′)�R,B],

−iθ(t − t ′) exp[−i(t − t ′)�N,1], iθ(t ′ − t) exp[−i(t − t ′)�N,2]) (33)

where θ is the unit step function. The Fourier transform of G[0] is

G̃[0](E) =
∫ +∞

−∞
exp(isE)G[0](s) ds (34)

= diag([(E + iε)IR,F −�R,F ]−1, [(E − iε)IR,B −�R,B]−1,

[EIN,1 −�N,1]−1, [EIN,2 −�N,2]−1). (34a)

Adding +iε (respectively, −iε) to E effects the usual small displacement of the poles of the
integrand down (respectively, up) from the real axis in the complex E-plane when recovering
G[0](t − t ′) from G̃[0](E); no displacement is needed for poles off the real axis. If there is
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a nonzero gap between the entire nonreal spectrum and the real axis, a very small raising or
lowering of the nonreal spectrum in the E-plane will not affect the result in this subspace of
H; in such a case, we can give an abbreviated formula for G̃[0](E), that is

G̃[0](E) = (EI + iεη −H [0])−1 (35)

where I is the unit operator in H.
We shall now specify a complete, orthogonal (in the Hilbert space sense) set of

eigenfunctions of H [0]. Let SR,F (respectively SR,B ) denote the subset of real eigenvalues
of H [0] such that the corresponding eigenstates are also eigenstates of η with eigenvalue +1
(respectively −1). Let SN,1 denote the set of those eigenvalues of H [0] having negative
imaginary part, and SN,2 be the set of complex conjugate points of those in SN,1. We shall
assume that SN,1 is, or can be approximated by, a discrete spectrum; conceivably, however,
there may exist H [0] such that the corresponding set SN,1 has a nondiscrete topology, e.g. a
subset of a curve in C.

We denote a state in the basis leading to the matrix form of equation (30) as � [0]Z,Y
�γ . The

index Z can take the values R or N, and for Z = R, Y can take the values F or B, while for
Z = N , Y can take the values 1 or 2. Let αY be defined as

αY =
{

+1 if Y = F
−1 if Y = B (36)

� be the eigenvalue ofH [0], and γ (an index which is implicitly dependent on the other quantum
numbers) label degenerate states with respect to H [0]. We note the following behaviour of
these eigenstates under the action of η:

η�
[0]R,Y
�,γ = αY� [0]R,Y

�,γ (37a)

η�
[0]N,1
�∗γ = � [0]N,2

�γ (37b)

η�
[0]N,2
�∗γ = � [0]N,1

�γ . (37c)

The Hilbert space orthonormality of the states and the completeness relation are as follows:

(
�

[0]Z′,Y ′
�′γ ′

)† (
�

[0]Z,Y
�γ

)
= δZ′ZδY ′Y

{
δ(�′ −�)δγ ′γ if Z = R
δ�′�δγ ′γ if Z = N (38a)

I =
∑
Y=F,B

∫
E∈SR,Y

∑
γ

�
[0]R,Y
Eγ

(
�

[0]R,Y
Eγ

)†
dE +

∑
�∈SN,1

∑
γ

[
�

[0]N,1
�γ

(
�

[0]N,1
�γ

)†

+� [0]N,2
�∗γ

(
�

[0]N,2
�∗γ

)†]
. (38b)

We find the time-dependent, open-channel solutions of the Schrödinger equation with
H [0] as Hamiltonian, to be

�
[0]R,Y
Eγ (t) = exp(−iEt)� [0]R,Y

Eγ . (39)

Then the full scattering wavefunction�R,Y
Eγ (t)with input as�[0]R,Y

Eγ (t) for t →−αY∞ satisfies
the integral equation

�
R,Y
Eγ (t) = �[0]R,Y

Eγ (t) +
∫ +∞

−∞
G[0](t − t1)H [1]�

R,Y
Eγ (t1) dt1. (40)
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We presume that this equation can be solved by unlimited Neumann iterations, with the result

�
R,Y
Eγ (t) = �[0]R,Y

Eγ (t) +
∫ +∞

−∞
G[0](t − t1)H [1]�

[0]R,Y
Eγ (t1) dt1

+
∞∑
j=2

∫
· · ·

∫ +∞

−∞
dt1 · · · dtjG[0](t − t1)H [1]

×
[

j∏
k=2

G[0](tk−1 − tk)H [1]

]
�

[0]R,Y
Eγ (tj ). (41)

In the rhs of equation (41) let us now (i) use equation (39) for the zero-order wavefunctions,
(ii) substitute the inverse of equation (34) for each entry G[0](tk−1 − tk) in the product in
equation (41), (iii) change variables of integration from tk to sk (for k = 2, . . . , j , while t1 is
unchanged) in the j th summand, where

sk = tk−1 − tk for k = 2, . . . , j (42a)

so that

−tj = −t1 +
j∑
k=2

sk, (42b)

(iv) carry out the integrals over s2, . . . , sj in the jth summand, and (v) do the resulting integrals
involving delta-functions in energy. We define the transition operator T (E) as

T (E) = H [1]
∞∑
j=0

[
G̃[0](E)H [1]]j (43a)

= H [1]
[
I − G̃[0](E)H [1]

]−1
(43b)

= [
I −H [1]G̃[0](E)

]−1
H [1] (43c)

where the zero power of an operator is the unit operator. Then equation (41) reduces to

�
R,Y
Eγ (t) = exp(−iEt)� [0]R,Y

Eγ +
∫ +∞

−∞
G[0](t − t1) exp(−iEt1)T (E)�

[0]R,Y
Eγ dt1. (44)

Let us now take the η-product of both sides of equation (44) with �[0]R,Y ′
E′γ ′ (t), while also

inserting the unit operator, in the form of the rhs of equation (38b), following the Green
function in the integrand of equation (44): using expression (33) for the Green function, we
find, after some manipulation, that(
�

[0]R,Y ′
E′γ ′ (t);�R,Y

Eγ (t)
)
= αY ′δY ′Y δ(E′ − E)δγ ′γ − i

(
�

[0]R,Y ′
E′γ ′ ; ηT (E)� [0]R,Y

Eγ

)
×

[
δY
′F

∫ t

−∞
exp[i(E′ − E)t1] dt1 + δY

′B
∫ +∞

t

exp[i(E′ − E)t1] dt1

]
. (45)

The derivation from equation (45) of an expression for the transition probability per unit time
is carried out in the appendix. If we define the inverse function to equation (36) as

Ȳ α =
{
F if α = +1
B if α = −1

(46)

then as |t| → ∞, equation (45) has the limiting forms(
�

[0]R,Y ′
E′γ ′ (t);�R,Y

Eγ (t)
)
→ αY ′δ

Y ′Y δ(E′ − E)δγ ′γ − 2π iδ(E′ − E)

× δY ′Ȳ α
(
�

[0]R,Y ′
E′γ ′ ; ηT (E)� [0]R,Y

Eγ

)
as t → α∞. (47)
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We analyse equation (47) to determine the analogues of reflection and transmission
coefficients, and assemble the results into an S-operator; that is we want to have

(
�

[0]R,Y ′
E′γ ′ (t);�R,Y

Eγ (t)
)
→



(
�

[0]R,Y ′
E′γ ′ ; S� [0]R,Y

Eγ

)
for t → +αY ′∞(

�
[0]R,Y ′
E′γ ′ ;� [0]R,Y

Eγ

)
for t → −αY ′∞.

(48)

On the basis of a comparison of equations (47) and (48), we proceed to define the S-operator
as an entity that acts on, and only on, the subspace HR of H. We define IR as the identity
operator within HR , and XRR as the restriction of a general operator X : H → H to the
suboperator that maps to HR → HR . We note that in the special cases treated here of an H [0]

and η of the form of equation (30),H [0]RR and ηRR commute, and correspondinglyH [0]RR is
Hermitian. Then if we let

S = IR − 2π i
∫ +∞

−∞
dE′′

[
δ
(
E′′I −H [0]

)
ηT (E′′)δ

(
E′′I −H [0]

)]RR
(49)

equations (47) and (48) are in accord.
It remains to prove that the S-operator acts unitarily within HR . In fact, we infer from

equation (49) that

SS† − IR = −2π i
∫ +∞

−∞
dE

[
δ
(
EI −H [0]

)
η
]RR

[�(E)]RR
[
ηδ

(
EI −H [0]

)]RR
(50)

where, by definition,

�(E) = T (E)η − ηT (E)† + 2π iT (E)δ
(
EI −H [0]

)
T (E)†. (51)

Here we made use of the properties that the operator δ(EI − H [0]) has its cokernel and
image contained within the subspace HR , and that, as a result of equations (30a) and (30b),
δ(E − H [0]) is Hermitian as well as pseudo-Hermitian. We want to prove that �(E) equals
the zero operator for all real values of E. To do this, we modify the argument that leads to [41],
equation (5.29). The steps are very similar, except that now ηH [1]† = H [1]η, and we need the
easily verified result

G̃[0](E)η − ηG̃[0](E)† = −2π iδ
(
ηE − ηH [0]) = −2π iδ

(
EI −H [0]). (52)

A similar proof can be constructed to show that S†S = IR .
We remark finally that, in a rigorous analysis of a physical process in a finite time interval

(e.g., in a quantum measurement theory), it will be necessary to include the closed-channel
states due to the incompleteness of the open-channel states in the Hilbert space.

4. Direct sum of two quantized real scalar fields

In this section, we shall advance a dynamics for a quantum field theory, the state space of
which comprises the direct sum of the state spaces for two quantized real (i.e. Hermitian)
Klein–Gordon fields. We shall show that the dynamics is relativistically invariant, and work
out a simple example of collision dynamics using first-order perturbation theory.

We use the time and space coordinates xµ = (x0, x1, x2, x3), the metric tensor
gµν = diag(+1,−1,−1,−1) and the Hilbert space notation of section 2, and take both HF and
HB to be copies of Fock space (see [43], ch 7a) for an electrically neutral spin zero particle of
mass m. As before, Y can take either value F or B. Let the zero state be ϒ(Y, z) ∈ HY , the
vacuum state (with Hilbert space norm +1) be ϒ(Y, 0) ∈ HY , and let aYp and aY †p be the
operators that destroy and, respectively, create a particle of 3-momentum p. We normalize



Schrödinger equation for joint bidirectional motion in time 7113

these operators such that their commutators are[
aYp , a

Y
p′
] = 0 (53a)[

aY †p , a
Y †
p′

]
= 0 (53b)[

aYp , a
Y †
p′

]
= δ3(p− p′)IY . (53c)

Now let {p1,p2, . . . ,pN } be a finite set of distinct 3-momenta; then we have the following
state in HY that corresponds to one particle with 3-momentum p1, . . . , and one particle with
3-momentum pN :

ϒ(Y,N;p1,p2, . . . ,pN) = (N!)−1/2aY †p1
· · · aY †pN

ϒ(Y, 0). (54)

The normalization guarantees that IYN ,

IYN =
∫
· · ·

∫
R

3
d3p1 · · · d3pNϒ(Y,N;p1,p2, . . . ,pN)ϒ(Y,N;p1,p2, . . . ,pN)

† (55)

is a projection operator from HY to the subspace of N-particle states in HY .
Let UFB be the simple linear mapping from HB to HF , in that

UFBϒ(B, z) = ϒ(F, z) (56a)

UFBϒ(B, 0) = ϒ(F, 0) (56b)

UFBϒ(B, 1;p1) = ϒ(F, 1;p1) (56c)
... . . . .

The operator UFB obviously has a two-sided inverse UBF that coincides with its adjoint, i.e.

UBF = (UFB)−1 = (UFB)† (57a)

UFBUBF = IF (57b)

UBFUFB = IB. (57c)

We reconstruct the subfields in terms of the destruction and creation operators in the
manner of Peskin and Schroeder [44], p 21, with ωp =

√
k2 +m2 > 0:

φY (x) =
∫

R
3

d3p

[2ωp(2π)3]1/2

[
aYp exp(ip · x) + aY †p exp(−ip · x)

]
(58a)

πY (x) =
∫

R
3

d3p
(−i)(ωp)

1/2

[2(2π)3]1/2

[
aYp exp(ip · x)− aY †p exp(−ip · x)

]
. (58b)

The latter entities have the commutators

[φY (x), φY (y)] = 0 (59a)

[πY (x), πY (y)] = 0 (59b)

[φY (x), πY (y)] = iδ3(x− y)IY . (59c)

The field operators satisfy

φB(x) = UBFφF (x)UFB (60a)

πB(x) = UBFπF (x)UFB. (60b)
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The physical dimensions of the fields φY (x) and πY (x) are (length)−1 and (length)−2,
respectively, modulo powers of h̄ and c.

We shall now formulate a particular case of dynamics and show how to verify that the
theory is relativistically invariant. Following the pattern in [44], equations (2.8), (2.18), (2.19)
and (4.12), we postulate ad hoc the following operator for the energy density T 00(x):

T 00(x) = T [0]00(x) + T [1]00(x) (61)

where

T [0]00(x) =
[

1
2 (π

F (x)2 + ∇xφ
F ·∇xφ

F +m2φF (x)2)

0

0
1
2 (π

B(x)2 + ∇xφ
B ·∇xφ

B +m2φB(x)2)

]
(62a)

T [1]00(x) =
[

1
4ζ

FφF (x)4 − 1
4ξφ

F (x)2UFBφB(x)2

1
4ξφ

B(x)2UBFφF (x)2 1
4ζ

BφB(x)4

]
. (62b)

The dimensionless coupling constants ζ F � 0, ζ B � 0 and (following, if needed, a separate
phase transformation in HF and HB ) ξ are all real. The Hamiltonian is defined as follows:

H = H [0] +H [1] (63a)

H [0] =
∫

R
3
T [0]00(x) d3x (63b)

H [1] =
∫

R
3
T [1]00(x) d3x. (63c)

The momentum–density operator T j0(x) and momentum operator�j have forms that do not
involve the interaction coupling parameters ζ F , ζ B or ξ :

T j0(x) =



−1

2

(
πF (x)

∂φF

∂xj
+
∂φF

∂xj
πF (x)

)
0

0 −1

2

(
πB(x)

∂φB

∂xj
+
∂φB

∂xj
πB(x)

)

 (64)

�j =
∫

R
3
T j0(x) d3x. (65)

The energy-flow operator T 0j (x) is taken to be the same operator as T j0(x). The stress-tensor
operator T jk(x) is chosen as follows:

T jk(x) = T [0]jk(x) + T [1]jk(x) (66)

where

T [0]jk(x) =

∂φF∂xj

∂φF

∂xk
+ 1

2δ
jk(πF (x)2 −∇xφ

F ·∇xφ
F −m2φF (x)2)

0

0
∂φB

∂xj

∂φB

∂xk
+ 1

2δ
jk(πB(x)2 −∇xφ

B ·∇xφ
B −m2φB(x)2)


 (67a)
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T [1]jk(x) =
[

− 1
4δ
jkζ FφF (x)4 1

4ξδ
jkφF (x)2UFBφB(x)2

− 1
4δ
jkξφB(x)2UBFφF (x)2 − 1

4δ
jkζ BφB(x)4

]
. (67b)

We can now define several other operators on the space of time-dependent states, to
assemble a set of generators for the Poincaré group and Schrödinger equation:

�0 = 1

i

∂

∂x0
I (68a)

� = �0 +H (68b)

Lj =
∫

R
3
εjklxkT l0(x) d3x (68c)

Bj = x0�j −
∫

R
3
xjT 00(x) d3x. (68d )

The rotation generators Lj and Lorentz ‘boost’ generators Bj have been defined as in [45],
equations (11.57) and (15.19). We call� the Schrödinger operator, as the Schrödinger equation
for the time-dependent state �(x0) ∈ HF ⊕HB is

��(x0) = 0. (69)

The real linear span of the set P of ten operators

P = {−H, {�j,Lj , Bj , for j = 1, 2, 3}} (70)

comprises a Lie algebra that is isomorphic to that of the Poincaré group, as is verified by
computing the following commutators (we omit the calculational details):

[�j,H ] = 0 (71a)

[Lj,H ] = 0 (71b)

[Bj,H ] = −i�j (71c)

[�j,�k] = 0 (71d )

[Lj,�k] = iεjkl�l (71e)

[Bj,�k] = −iδjkH (71f )

[Lj,Lk] = iεjklLl (71g)

[Lj,Bk] = iεjklBl (71h)

[Bj,Bk] = −iεjklLl . (71i)

We also have the following commutators with �0:

[�0,H ] = 0 (72a)

[�0,�j ] = 0 (72b)

[�0, Lj ] = 0 (72c)

[�0, Bj ] = −i�j . (72d )

It proves to be the case that� commutes with all ten basis elements and hence all elements
of the Poincaré group’s Lie algebra,

[X,�] = 0 for all X ∈ P (73)
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and all elements of the component of the identity of the Poincaré group are obtained by
exponentiating (−i) times some element of the Lie algebra. Hence, the dynamics entailed
by the Schrödinger equation is invariant under the component of the identity of the Poincaré
group, in the sense that the application of any element of the group to a solution of the equation
of motion yields a transformed state that is also a solution to the same equation of motion, i.e.
equation (69). We shall not consider the discrete transformations of space and time herein,
except to note that, since in general ζ F = ζ B , time reversal—in the strict sense of a simple
interchange of FMT and BMT—need not be a symmetry of the above dynamics; the latter
assertion should be distinguished from symmetry under conventional time reversal, however,
which is more accurately termed ‘reversal of the direction of (spatial) motion’—see [46]
p 325. In the present context, a distinction between reversal of time and reversal of motion
can be meaningful, and thereby determines an absolute direction of time—see [12], p 3,
footnote 1.

A similarity transformation by the operator W of an operator X is defined as WXW−1.
We define the pseudounitary operatorW as

W =
[
IF cosh θ UFB sinh θ
UBF sinh θ IB cosh θ

]
(74)

where θ is a real constant. A similarity transformation by W leaves the rhs of equation (62a)
unchanged, and transforms the rhs of equation (62b) into another operator of the same form
with different coupling constants. If the discriminant

D = (ζ F − ζ B)2/4− ξ2 (75)

is positive, and we choose

θ = − 1
2 arctanh[2ξ/(ζ F − ζ B)] (76)

the resultant operator is block diagonal, i.e. there is no coupling between FMT and BMT (as
redefined). Hence we need ξ = 0 and D nonpositive to guarantee a nontrivial dynamics. A
simplification also occurs if D is negative and

θ = − 1
2 arctanh[(ζ F − ζ B)/2ξ ]. (77)

The modified coupling constants then have equal diagonal coefficients.
A further remark: in the above kinematics, there is a family of vacuum states given

by αϒ(F, 0) ⊕ βϒ(B, 0), with α and β being complex constants (at least one of which is
nonzero) modulo equivalence by an overall nonzero complex multiplier. Hence the geometry
of the space of rays of vacuum states is CP 1, which is homeomorphic to the Riemann sphere,
i.e. S2, see [47], p 22. This fact will be used in section 5.

To complete this section, we shall apply first-order perturbation theory to the above
formalism to estimate the cross section for an input state of two particles, both in FMT or
both in BMT, to scatter into an output state of two particles, where the two-particle output
may be either jointly in FMT or jointly in BMT. First-order perturbation theory consists in
substituting H [1] for T (E) in equation (98). After dropping several divergent self-energy
terms, we find the result as given in [44], p 112. We work in the CM frame so that the input
particles have momenta +p̂in|p| and −p̂in|p|, the output particles have momenta +p̂out|p|
and −p̂out|p|, and so that the total energy ECM and relative speed vrel (as defined in [48],
equation (3.4.18)) are

ECM = 2ωp (78a)

vrel = 2|p|/ωp. (78b)
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Then the total cross sections in ordinary units are

(σtotal)FMT←FMT = 9(ζ Fh̄c)2

8πE2
CM

(79a)

(σtotal)BMT←BMT = 9(ζ Bh̄c)2

8πE2
CM

(79b)

(σtotal)BMT←FMT = 9(ξh̄c)2

8πE2
CM

= (σtotal)FMT←BMT. (79c)

By way of a numerical estimate, suppose that h̄c/ECM is half the π meson Compton
wavelength, that is about 10−15 m, and that ξ is about 10−10; ζ F and ζ B can be large, so long
as D � 0 is satisfied. The cross sections of equation (79c) are then about 10−50 m2. These
processes are sufficiently unlikely that they are practically unobservable on a microscopic
scale, similar to most gravitation-induced phenomena.

Note that a collision in which either FMT← FMT or BMT← FMT can take place will
entail, on average, an apparent violation of conservation laws. At a time earlier than the
collision, the quantum state appears to be a superposition, or a kind of mixture, of FMT states
and BMT states with equal total energies and momenta. The small BMT component of the
state is part of the output, so that we do not, and by our rules cannot, control this part of the
temporally initial state. This BMT component of the temporally earlier quantum state looks to
our imagination like a probability-amplitude wave converging—as our time increases—on
the collision event in spacetime. This wave interacts very weakly with the constituents of
the local environment (the laboratory, the earth, etc, all of which are in FMT), even if this
wave describes particles as π0 mesons that, were they to appear in an FMT state, would
interact strongly with the same environment. Hence to a first approximation we need not
question the fate of this output BMT wave in the past; it will be effectively undetectible to us.
(A collision and a detection amount to a second-order process.) Nevertheless, the BMT π0

would presumably each decay into two BMT gamma rays at a time earlier than the collision,
entities which are not treated in the present theory, but which would also interact weakly
with the FMT environment. What would be observable after the collision in an FMT
laboratory is that there is a small probability that the input particles, including all their
energy and momentum, disappear. There would thus be an apparent nonconservation of
energy and momentum, as our instruments can conveniently detect only the FMT part of the
energy/momentum flow in spacetime. The observed stability of matter could be due to either
(1) the smallness of the FMT/BMT coupling or (2) the circumstance that in a hypothetical
theory that describes the physical world, fermion (lepton, baryon) quantum numbers associated
with FMT and with BMT are separately conserved.

To an extent, then, this theory gives a realization to the popular picture of a time machine
for travelling into the past, albeit only on the level of elementary particle physics. The process
that a macroscopic entity scatters coherently from an FMT state into a BMT state would be
improbable in the extreme.

5. Further discussion and an application

The physical picture that we have adopted amounts to saying that the world can be described
by a kinematics that looks like the direct sum of the kinematics of two conventional quantum
field theories. We propose the following visualization: the universe consists of a connected
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spacetime manifold, within which the ingredients of matter can be, besides in the conventional
range of FMT physical states, in BMT states; the dynamical coupling, that is the rate of
quantum jumping, of matter between these two sets of states is small, but nonzero. What is of
physical interest in the context of theory is establishing criteria for determining if transitions
between the hypothetical set of BMT states and states in the known FMT world occur at
some very low level. Apart from the computation of scattering cross sections in section 4 and
remarks on vacuum states later in this section, we shall not deal with this problem herein.

The formalism proposed in section 4 presumes that particles in forward or backward
motion have the same bare mass m; the theory satisfies the criterion of relativistic invariance.
If we instead introduce distinct bare massesmF andmB in equation (62a), relativistic invariance
fails. A naive consideration of the possible theoretical structures does not seem to exclude
the possibility that the spectrum of masses, spins, electric charges, etc, of elementary particles
could be widely different in the FMT and BMT subspaces. But in another circumstance,
Weinberg [48], p 145, made the observation that the commutativity restriction for the
energy density operator at spacetime points separated by a nonzero space-like interval is
the ‘ . . . condition that makes the combination of Lorentz invariance and quantum mechanics
so restrictive’ (italics in the original). There is not yet a counterpart to this condition in the
theory described here, as we have avoided the introduction of a Heisenberg picture for field
(or any) operators, due in part to the fact that Hamiltonians can have complex eigenvalues,
and in part to nonlocal definitions of input and output. The point we want to make is that
relativistic invariance may place severe restrictions on the possible mappings from the state
space and dynamics of one quantum field theory to those of another, and thereby constrain the
differences between possible field physics, and spectrum of particle masses, spins, charges,
etc, associated with the respective FMT and BMT sub-worlds. This problem remains to be
investigated.

A proposal concerning the existence of matter that has an internally reversed time sense
was made by Stannard [49]. The argument there was made in the context of the then-recently-
discovered CP-noninvariance of K0-meson decays, and distinguishes the proposed new kind
of matter (called ‘Faustian’) from conventional antimatter, which was described as ordinary
matter moving backward in time. There is a resemblance between the physics of Stannard’s
Faustian matter and that of matter in BMT proposed herein. However, the paper did not contain
a mathematical formulation of the equations of motion of such a generalized system. It may
be said that the theory proposed herein is a possible formulation of Stannard’s hypotheses,
accompanied by the specifications (i) that the state space is the direct sum, rather than a direct
product, of the state spaces of matter in FMT and in BMT, and (ii) that the quantum state of
the complete system is characterized by joint forward and backward evolution or motion in
time from a suitable input combination of initial and final conditions.

Feynman [50] made an attempt to introduce negative probabilities into physics that
is distinct from the work cited in [29] on indefinite metrics. We emphasize that in the
theory presented here, probabilities are non-negative and S-matrices are unitary as opposed
to pseudounitary. The metric of indefinite sign is interpreted as giving rise to a net current
of something across a complete space-like surface, where the current is associated with the
probability in a way that involves both input and output states. Analogous to spin, the
quantity that gives rise to the current is not further described, and these flows are nonclassical:
the ‘velocity’ of flow in spacetime can in effect have only the values +1 and −1, that is the
eigenvalues of the metric operator η, corresponding to FMT and BMT, respectively. ‘Current’,
‘flow’ and ‘transport’ in time are taken as physically suggestive words, but we do not, and
assert that we need not, specify in the sense of classical mechanics either what it is that is
flowing or the existence of any extra parameter with respect to which the rate of flow is defined.
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The association of the expectation value of a quantity with the net transport of that quantity is
taken as a physical axiom, which has no deeper explanation in the present context.

We have introduced a theoretical construct in which an event, taken as a cause, can have
effects either earlier or later than the cause, or both. Concordantly, we adopt what is called the
‘block universe’ viewpoint by Price ([14], p 12, and the following) and by Nahin ([51], p 150,
and the following), of the dynamically prescribed configuration of a system taken as a whole
for all space and for all times in a chosen interval. An entity that can control the complete
input to, and observe the output from, such a system must in some sense stand outside time
and space as we know them, that is must have what is called an ‘atemporal Archimedean
standpoint’ by Price ([14], p 114). This ‘outside’ standpoint is analogous to that in which an
ordinary observer in spacetime can manipulate the input for solutions of the steady-state, time-
independent Schrödinger equation. The phenomenon of closed causal chains, in the sense
of Reichenbach ([8], p 36) or Nahin ([51], p 196) could arise in this hypothetical universe.
Self-consistency of this process apparently requires a kind of determinism, or a limitation on
free will, that is in contradiction to our present understanding. The latter problem also arises
in the hypothetical case of topologically connected spacetimes with closed time-like world
lines—see [15], p 254 or [51], pp 80–3.

A conventional quantum field theory has a unique vacuum state, a circumstance that
permits simplifications, e.g. positioning the energy axis so that the vacuum energy is zero.
In the field theory of section 4, there are two vacuum states. (We remark that the physical
vacuum is also nonunique in gauge theories—see e.g. [52], ch 10—but this results from
assuming basic tachyon, or imaginary mass, fields with certain higher-than-second-order
potential energy terms in the classical field Lagrangian, such that the unique mathematical
vacuum is a local maximum in the field potential energy, and the minimum energy states form
points of a degenerate manifold of field states disjoint from this primitive vacuum state; in the
present case, we assume that the bare masses are positive, and that the higher-order interaction
energy terms give rise to physical vacuum states having complex energy eigenvalues, i.e. are
closed channels.) In order to gain physical insight concerning this possibility, we devote the
remainder of this section and of the paper to a nonperturbative calculation on vacuum states
and energies. With minor modifications, the mathematics that follows could accommodate
the vacuum state matrix of any suitable Hamiltonian; to keep to a specific and simple model,
we use the Hamiltonian of equation (63). We establish a two-channel problem consisting of
the vacuum states

�F =
[
ϒ(F, 0)

0

]
�B =

[
0

ϒ(B, 0)

]
. (80)

In the time interval [0, τ ], let the normalized input state be (cf equation (21))

�in(0, τ ) =
[

ϒ(F, 0) cos θ
ϒ(B, 0) exp(iψ) sin θ

]
(81)

where θ and ψ are polar and azimuthal coordinates, respectively, on S2. The output state also
comprises the direct sum of vacuum states taken at two different times (cf equation (22)),

�out(τ, 0) =
[
ϒ(F, 0)βF

ϒ(B, 0)βB

]
(82)

where βF and βB are complex coefficients that comprise the output data, which we know
beforehand must satisfy the normalization condition

|βF |2 + |βB |2 = 1. (83)
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We assume a time-dependent state vector �(t) of the form

�(t) = �F�F (t) +�B�B(t) (84)

and establish a coupled, first-order differential equation for the time evolution of the coefficient
functions�Y (t), Y = F,B. The equations of motion are

i
d

dt
�Y (t) = αY

∑
Y ′=F,B

(
�Y ;H�Y ′

)
�Y ′(t). (85)

The matrix of the Hamiltonian proves to be(
�Y ;H�Y ′

)
= E[0]αY δ

YY ′ + E[1]
(
αY ζ

Y δYY
′ − ξδYF δBY ′ − ξδYBδFY ′

)
. (86)

In equation (86), E[0] and E[1] are the conventional (FMT only) vacuum expectation values of
the zero-order Hamiltonian and 1

4

∫
φ(x)4 d3x, respectively; to be sure, both of these quantities

are plus infinity in the present theory, but we shall pretend otherwise and see what happens.
The eigenvalues of the Hamiltonian matrix are

EY = E[0] + E[1]
[

1
2 (ζ

F + ζ B)− iαY
√−D]

(87)

where αY is defined in equation (36), and we have presumed that the D of equation (75) is
negative. We therefore have a coupled-channel problem that is akin to an ordinary single-
channel bound state problem in the context of a second-order, time-independent Schrödinger
equation; however, there is no energy-like parameter that can be varied here, nor is there a
segment of the time axis in which a shift between a rising and a falling exponential can take
place. Hence a bound state in the time dimension does not occur in this case.

Continuing the argument, we define

Ē = E[0] + E[1](ζ F + ζ B)/2 (88a)

κ = (ζ F − ζ B)/2 (88b)

µ =
√
ξ2 − κ2 = √−D > 0 (88c)

cos σ = κ/ξ (88d)

sin σ = µ/ξ. (88e)

A set of eigensolutions to the Schrödinger equation (85) is then, for Y = F,B,

�(Y)(t) =
[
�
(Y)
F (t)

�
(Y)
B (t)

]
= exp(−iĒt − αYµE[1]t)

[
iξ

iκ − αYµ
]
. (89)

The reason for the superscript is that the solution�(F)(t) (�(B)(t)) decreases exponentially as
t → +∞ (t → −∞). The matrices of η and ηH in the latter basis are time independent, and
have the values

�(Y)(t)†η�(Y ′)(t) = δYF δBY ′ [2µ(iκ + µ)] + δYBδFY
′
[−2µ(iκ − µ)] (90a)

�(Y)(t)†ηH�(Y ′)(t) = δYF δBY ′ [2µ(iκ + µ)(Ē + iµE[1])]

+ δYBδFY
′
[−2µ(iκ − µ)(Ē − iµE[1])]. (90b)

A general solution to the Schrödinger equation has the form

�(t) = C(F)�(F)(t) + C(B)�(B)(t). (91)
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We choose the constantsC(Y) so that the input boundary conditions (81) are satisfied. We find
that

C(Y) = [−αY sin θ exp(iψ + iĒτ ) + αY cos θ exp(−iαYσ + αYµE
[1]τ )]

×{iξ [exp(−iσ + µE[1]τ )− exp(+iσ − µE[1]τ )]}−1. (92)

The expectation values, as defined in equation (26), for the unit operator and the Hamiltonian
in state �(t) are given by

[I ]Av = 2 sin σ [−sin σ + 2 sin σ cos(σ + ψ + Ēτ ) cosh(µE[1]τ )

− 2 cosσ sin(σ + ψ + Ēτ ) sinh(µE[1]τ )]�−1 (93a)

[H ]Av = Ē[I ]Av + E[1]A�−1 (93b)

� = cosh(2µE[1]τ )− cos(2σ) (93c)

A = 2ξ sin2 σ [cosσ − 2 cosσ cos(σ + ψ + Ēτ ) cosh(µE[1]τ )

− 2 sinσ sin(σ + ψ + Ēτ ) sinh(µE1]τ )]. (93d )

When µE[1]τ is large, we find that

[I ]Av→−4 sin σ sin(ψ + Ēτ ) exp(−µE[1]τ ) +O(exp(−2µE[1]τ )) (94a)

[H ]Av→−4 sin σ [Ē sin(ψ + E1]τ ) + E[1]ξ sin σ cos(ψ + Ēτ )] exp(−µE[1]τ )

+O(exp(−2µE[1]τ )). (94b)

Hence, if the ‘experiment’ is performed over a time interval τ that is sufficiently long, the
vacuum expectation values across a time= constant surface of the probability and of the
energy are both exponentially small uniformly over the closed time interval [0, τ ]. In other
words, whatever the input vacuum state, the magnitude and phase of the resulting time-
dependent vacuum state will, for a sufficiently long time τ , adjust themselves so that, at any
given time, almost equal amounts of probability are in FMT and in BMT, and almost equal
amounts of energy are in FMT and in BMT.

Suppose, finally, that we compute the expectation values T̄ µν(x0,x) with respect to
�(x0) of the components of the stress–momentum–energy–density operators T µν(x), µ, ν =
0, 1, 2, 3, as given in equations (61), (65) and (66):

T̄ µν(x0,x) = �(x0)†ηT µν(x)�(x0). (95)

So long as �(x0) satisfies the Schrödinger equation (69), the position-dependent array
T̄ µν(x0,x) can be shown to have zero four-divergence and to have the transformation
properties of a second-rank contravariant tensor field under the action of the restricted Poincaré
group, in the sense that the application of one of the Lie algebra elements of equation (71)
to �(x0) yields the same effect on T̄ µν(x0,x) as would have the corresponding Lie algebra
element acting on such a tensor field. Accordingly, we can take such a T̄ µν(x0,x) to be the
source distribution of a linearized, classical gravitational field in a background Minkowski
spacetime. If we choose �(x0) to be the vacuum state of equations (84), (91) and (92), the
result of equation (95) is not a tensor field (in particular, with respect to Lorentz boosts), since
the vacuum state does not satisfy the complete Schrödinger equation. Nevertheless, we take
the (still divergent) vacuum expectation value T̄ 00(x0,x) to be an estimate for the energy
density due to the vacuum. This energy density amounts to the expectation value for total
energy, divided by the total volume of space. We construe the result (94b) as contributing
to an explanation for the cosmological constant problem, as described in [53] or by Carroll
online [54]: given that the discriminant D of equation (75) is negative, the net vacuum energy
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density in spacetime should have a very small magnitude, and the energy density would depart
from zero due mainly to the presence of ordinary matter in FMT or BMT, and possibly to
small vacuum effects that do not enter into the present simple theory and approximation.
Equation (94) also suggests that if D < 0 the probability that the system is found to be in the
BMT vacuum state, but not necessarily in states involving matter in BMT, is about the same
as the probability of finding the FMT vacuum state.

Appendix. Transition rates

We want to obtain an expression that permits us to deal with the energy delta-functions in
equation (47) to obtain transition probabilities per unit time and cross sections. Although the
formalism permits inputs at the initial and final times to be coherent, and permits the study
of outputs with definite phase relationships between the temporally earlier and temporally
later parts of the output, we shall not attempt this level of generality here: we assume phase
incoherence between the FMT and the BMT parts of the input, and discard all information
on interference between the FMT and the BMT parts of the output. In other words, we
shall presume a block-diagonal (FF and BB only) density matrix at input, and discard block
off-diagonal (FB and BF) parts of the density matrix at output.

Let us begin with equation (45) with γ ′ = γ , with the adiabatic switching factors
exp[−ε|t − t1|] inserted in the integrands, and the integrals carried out:(
�

[0]R,Y ′
E′γ ′ (t);�R,Y

Eγ (t)
)
= −i

(
�

[0]R,Y ′
E′γ ′ ; ηT (E)� [0]R,Y

Eγ

) [
δY
′F i exp[i(E′ − E)t]

(E − E′ + iε)

+ δY
′B i exp[i(E′ − E)t]

(E − E′ − iε)

]
. (96)

We relate the parameter ε to the effective on time τ of the interaction as follows: insofar
as the interaction affects the FMT output, we have presumed that the FMT part of Green’s
function G[0](t − t1) is switched on as exp[ε(t1 − t)] and therefore has squared magnitude
exp[2ε(t1 − t)]. We have

τ =
∫ t

−∞
exp[2ε(t1 − t)] dt1 = 1/(2ε). (97)

To obtain a transition probability per unit time, we shall divide the transition probability,
summed over a range in energy of output states, by τ . A similar result is obtained for the
effect of the modulated Green’s function on the BMT output.

We compute the absolute square of either the FMT (Y ′ = F) or the BMT (Y ′ = B) part
of the rhs of equation (96). In both cases, the rhs has a factor 1/[(E − E′)2 + ε2]. This factor
will be construed as tending to a delta-function in energy as ε becomes small, in fact close to
(π/ε)δ(E − E′). Since π/ε = 2πτ , the transition probability per unit time becomes, when
the sum over output energy states is converted to an integral with a density of states,

2π

h̄

∣∣∣(� [0]R,Y ′
Eγ ′ ; ηT (E)� [0]R,Y

Eγ

)∣∣∣2
ρY
′

γ ′ (E) (98)

where ρY
′

γ ′ (E) is a density in energy of output states of type Y ′ = F or Y ′ = B, state index γ ′,
and energy E.
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